skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smithwick, Erica A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ContextClimate change is altering suitable habitat distributions of many species at high latitudes. Fleshy fruit-producing plants (hereafter, “berry plants”) are important in arctic food webs and as subsistence resources for human communities, but their response to a warming and increasingly variable climate at a landscape scale has not yet been examined. ObjectivesWe aimed to identify environmental determinants of berry plant distribution and predict how climate change might shift these distributions. MethodsWe used species distribution models to identify characteristics and predict the distribution of suitable habitat under current (2006–2013) and future climate conditions (2081–2100; representative concentration pathways 4.5, 6.0, & 8.5) for five berry plant species:Vaccinium uliginosumL.,Empetrum nigrumL.,Rubus chamaemorusL.,Vaccinium vitis-idaeaL., andViburnum edule(Michx.) Raf.. ResultsElevation, soil characteristics, and January and July temperatures were important drivers of habitat distributions. Future suitable habitat predictions showed net declines in suitable habitat area for all species modeled under almost all future climate scenarios tested. ConclusionsOur work contributes to understanding potential geographic shifts in suitable berry plant habitat with climate change at a landscape scale. Shifting and retracting distributions may alter where communities can harvest, suggesting that access to these resources may become restricted in the future. Our prediction maps may help inform climate adaptation planning as communities anticipate shifting access to harvesting locations. 
    more » « less